Fall Protection Safety Rules

Falls from elevation are a major cause of injuries and deaths in the construction industry. We at Pacific One are committed to eliminating injuries caused by fall hazards by instituting a program of 100% fall protection for all fall hazards 10 feet or greater.

All work sites with fall hazards of 10 feet or more will have a site-specific fall protection work plan completed before any employees begin work. The employees on that specific job will be trained in the fall hazards and the method used to implement fall protection. The attached training guide will be used to train employees in the inspection and maintenance of their fall protection equipment, as well as fall protection selection criteria. All employees will use fall protection when there is exposure to a fall hazard of 10 feet or more. Employees who fail to follow this policy are subject to disciplinary action, up to and including dismissal.

The evaluation of the jobsite and the completion of the fall protection work plan will be done by a designated "competent person," who has an understanding of WISHA fall protection requirements, the fall protection systems available for use, and has the authority to take corrective action to eliminate employee exposure to fall hazards.

Fall protection will be provided either through the use of a fall arrest system or a fall restraint system as shown below and thoroughly described in the fall protection work plan available on site for review.

FALL PROTECTION WORK PLAN

JOB INFORMATION.

Job Name: Job Address: General Contractor: Job Foreman:

City: Date: Jobsite Phone:

IDENTIFIED FALL HAZARDS AND PROTECTION SELECTION

\checkmark	Hazard Type	General Location(s)	Fall Protection Method	Overhead Protection Method
	Roof > 4/12 Pitch	N/A	N/A	N/A
	Roof < 4/12 Pitch	N/A	N/A	N/A
	Skylight Openings	N/A	N/A	N/A
	Roof Openings	N/A	N/A	N/A
	Floor Openings	N/A	N/A	N/A
	Window Openings	Perimeter	Safety Rails	N/A
	Scaffolding	Perimeter	Guardrails	Hardhats
	Decks	N/A	N/A	N/A
	Balconies	N/A	N/A	N/A
	Leading Edge Work	N/A	N/A	N/A
	Mobile Lift Work	N/A	N/A	N/A
	Excavation Edges	N/A	N/A	N/A
	Grade Drop-Offs	N/A	N/A	N/A
	Other			

ASSEMBLY, MAINTENANCE, INSPECTION, DISASSEMBLY PROCEDURE

Assembly and disassembly of all equipment will be done according to manufacturers' recommended procedures.

Specific types of equipment on the job are:

A visual inspection of all safety equipment will be done daily or before each use, as stated in the Employee Training Packet. Any defective equipment will be tagged and removed from use immediately. The manufacturer's recommendations for maintenance and inspection will be followed.

HANDLING, STORAGE & SECURING OF TOOLS AND MATERIAL

Toe boards will be installed on all scaffolding to prevent tools and equipment from falling from scaffolding.

OVERHEAD PROTECTION

Hard hats are required on all job sites with the exception of those that have no exposure to overhead hazards. Warning signs will be posted to caution of existing hazards whenever they are present. In some cases, debris nets may be used if a condition warrants additional protection.

Toe boards (at least 4 inches in height) will be installed along the edge of scaffolding and walking surfaces for a distance sufficient to protect employees below. Where tools, equipment or materials are piled higher than the top of the toe board, paneling or screening will be erected to protect employees below.

EMERGENCIES AND INJURIES

First Aid Trained Employee(s) On Site:

Name: Mike Metcalf Name: Matt Hicks Title: Supervisor First Aid Kit Location(s): Job Box

Nearest Medical Facility:

Location of Nearest Telephone: Supervisor's Cell Phones, Job Shack

If a crew member is injured at elevation, the supervisor will evaluate the employee's condition and administer first aid. Emergency services will be called as needed. If an injured employee can't return to ground level, the employee will be brought down to a lower level by emergency services. The following equipment is available on site to facilitate lowering the injured worker:

Employee Training:

All employees must be instructed on the provisions of this plan and have been trained in the proper use of the fall protection equipment involved. By signing this document, the employees acknowledge that they understand the plan and have been trained in the use of the equipment.

Name:	Signature:	Date:

The competent person's signature verifies that the hazard analysis has been done, the employees informed of the plan's provisions and that employees have received training in the fall protection systems in use:

Name:	Signature:	Date:			

Title: Supervisor

Safety Belt, Harness and Lanyard Inspection and Maintenance

- I. ANSI Classification:
 - Class I Body belts used to restrain a person from falling.
 - Class II Chest harness used for restraint purposes (NOT for vertical free fall hazards).
 - Class III Full body harness used for fall arrest purposes. Can also be used for fall restraint.
 - Class IV Suspension/position belt used to suspend or support the worker. If a fall arrest hazard exists this must be supplemented by use of a safety harness.
- II. Inspection Guidelines:

To maintain their service life and high performance, all belts and harnesses must be inspected prior to each use for mildew, wear, damage and other deteriorations. Visual inspection before each use is just common sense. Periodic tests by a trained inspector for wear, damage or corrosion should be part of the safety program. Inspect your equipment daily and replace it if any of the defective conditions in this manual are found.

Belt inspection:

- 1. Beginning at one end, holding the body side of the belt toward you, grasp the belt with your hands six to eight inches apart. Bend the belt in an inverted "U". The resulting surface tension makes damaged fibers or cuts easier to see.
- 2. Follow this procedure the entire length of the belt or harness. Watch for frayed edges, broken fibers, pulled stitches, cuts, or chemical damage.
- 3. Special attention should be given to the attachment of buckles and Dee Rings to webbing. Note any unusual wear, frayed or cut fibers, or distortion of the buckles or Dees.
- 4. Inspect for frayed or broken strands. Broken webbing strands generally appear as tufts on the webbing surface. Any broken, cut, or burned stitches will be readily seen.
- 5. Rivets should be tight and immovable with fingers. Body side rivet base and outside rivet burr should be flat against the material. Bent rivets will fail under stress.

Especially note condition of Dee Ring rivets and Dee Ring metal wear pads (if any). Discolored, pitted or cracked rivets indicate chemical corrosion.

6. The tongue, or billet, of the belt receives heavy wear from repeated buckling and unbuckling. Inspect for loose, distorted, or broken grommets. Belts using punched holes without grommets should be checked for torn or elongated holes, causing slippage of the buckle tongue.

Safety Belt, Harness and Lanyard Inspection and Maintenance cont'd

7. Tongue Buckle:

Buckle tongues should be free of distortion in shape and motion. They should overlap the buckle frame and move freely back and forth in their socket. Roller should turn freely on frame. Check for distortion or sharp edges.

8. Friction Buckle:

Inspect the buckle for distortion. The outer bars and center bars must be straight. Pay special attention to corners and attachment to points of the center bar.

9. Sliding Bar Buckle:

Inspect buckle frame and sliding bar for cracks, distortions, or sharp edges.

Sliding bar should move freely. Knurled edge will slip if worn smooth. Pay special attention to corners and ends of sliding bar.

Lanyard inspection:

When inspecting lanyards, begin at one end and work to the opposite end. Slowly rotate the lanyard so that the entire circumference is checked. Spliced ends require particular attention. Hardware should be examined under procedures also detailed below, i.e., Snaps, Dee Ring, and Thimbles.

1. Steel

While rotating the steel lanyard, watch for cuts, frayed areas, or unusual wearing patterns on the wire. Broken strands will separate from the body of the lanyards.

2. Webbing

While bending webbing over a pipe or mandrel, observe each side of the webbed lanyard. This will reveal any cuts or breaks. Swelling, discolorations, cracks, and charring are obvious signs of chemical or heat damage. Observe closely for any breaks in stitching.

3. Rope

Rotation of the rope lanyard while inspecting from end to end will bring to light any fuzzy, worn, broken, or cut fibers. Weakened areas from extreme loads will appear as a noticeable change in original diameter. The rope diameter should be uniform throughout, following a short break-in-period.

Fall Protection System Considerations

Below are guidelines for worker protection where fall arrest or fall restraint systems are used. Some of this material may be suitable for adding to the written fall protection work plan specified in WAC 296-155-24505. Also reference WAC 296-24-88050, Appendix C, Personal Fall Arrest System.

1. Selection and use considerations:

The kind of personal fall arrest system selected should match the particular work situation, and any possible free fall distance should be kept to a minimum. Consideration should be given to the particular work environment. For example, the presence of acids, dirt, moisture, oil, grease, etc., and their effect on the system, should be evaluated. Hot or cold environments may also have an adverse affect on the system. Wire rope should not be used where an electrical hazard is anticipated. As required by the standard, the employer must plan to have means available to promptly rescue an employee should a fall occur, since the suspended employee may not be able to reach a work level independently.

Where lanyards, connectors, and lifelines are subject to damage by work operations such as welding, chemical cleaning, and sandblasting, the component should be protected, or other securing systems should be used. The employer should fully evaluate the work conditions and environment (including seasonal weather changes) before selecting the appropriate personal fall protection system. Once in use, the system's effectiveness should be monitored. In some cases, a program for cleaning and maintenance of the system may be necessary.

2. Testing considerations:

Before purchasing or putting into use a personal fall arrest system, an employer should obtain from the supplier information about the system based on its performance during testing so that the employer can know if the system meets this standard. Testing should be done using recognized test methods. WAC 296-24-88050, Appendix C, Part II, contains test methods recognized for evaluating the performance of fall arrest systems. Not all systems may need to be individually tested; the performance of some systems may be based on data and calculations derived from testing of similar systems, provided that enough information is available to demonstrate similarity of function and design.

3. Component compatibility considerations:

Ideally, a personal fall arrest system is designed, tested, and supplied as a complete system. However, it is common practice for lanyards, connectors, lifelines, deceleration devices, and body harnesses to be interchanged since some components wear out before others. The employer and employee should realize that not all components are interchangeable. For instance, a lanyard should not be connected between a body harness and a deceleration device of the self-retracting type since this can result in additional free fall for which the system was not designed. Any substitution or change to a personal fall arrest system should be fully evaluated or tested by a competent person to determine that it meets the standard, before the modified system is put in use.

Fall Protection System Considerations cont'd

4. Employee training considerations:

Thorough employee training in the selection and use of personal fall arrest systems is imperative. As stated in the standard, before the equipment is used, employees must be trained in the safe use of the system. This should include the following: Application limits; proper anchoring and tie-off techniques; estimation of free fall distance, including determination of deceleration distance, and total fall distance to prevent striking a lower level; methods of use; and inspection and storage of the system. Careless or improper use of the equipment can result in serious injury or death. Employers and employees should become familiar with this material, as well as manufacturer's recommendations, before a system is used. Of uppermost importance is the reduction in strength caused by certain tie-offs (such as using knots, tying around sharp edges, etc.) and maximum permitted free fall distance. Also, to be stressed are the importance of inspections prior to use, the limitations of the equipment, and unique conditions at the worksite which may be important in determining the type of system to use.

5. Instruction considerations:

Employers should obtain comprehensive instructions from the supplier as to the system's proper use and application, including, where applicable:

- a. The force measured during the sample force test;
- b. The maximum elongation measured for lanyards during the force test;
- c. The deceleration distance measured for deceleration devices during the force test;
- d. Caution statements on critical use limitations;
- e. Application limits;
- f. Proper hook-up, anchoring and tie-off techniques, including the proper dee-ring or other attachment point to use on the body harness for fall arrest;
- g. Proper climbing techniques;
- h. Methods of inspection, use, cleaning, and storage; and
- i. Specific lifelines that may be used. This information should be provided to employees during training.

6. Inspection considerations:

Personal fall arrest systems must be regularly inspected. Any component with any significant defect, such as cuts, tears, abrasions, mold, or undue stretching; alterations or additions which might affect its efficiency; damage due to deterioration; contact with fire, acids, or other corrosives; distorted hooks or faulty hook springs; tongues unfitted to the shoulder of buckles; loose or damaged mountings; nonfunctioning parts; or wearing or internal deterioration in the ropes must be withdrawn from service immediately, and should be tagged or marked as unusable, or destroyed.

Fall Protection System Considerations cont'd

7. <u>Rescue considerations:</u>

When personal fall arrest systems are used, the employer must assure that employees can be promptly rescued or can rescue themselves should a fall occur. The availability of rescue personnel, ladders or other rescue equipment should be evaluated. In some situations, equipment that allows employees to rescue themselves after the fall has been arrested may be desirable, such as devices that have descent capability.

8. <u>Tie-off considerations:</u>

- a. One of the most important aspects of personal fall protection systems is fully planning the system before it is put into use. Probably the most overlooked component is planning for suitable anchorage points. Such planning should ideally be done before the structure or building is constructed so that anchorage points can be incorporated during construction for use later for window cleaning or other building maintenance. If properly planned, these anchorage points may be used during construction, as well as afterwards.
- b. Employers and employees should at all times be aware that the strength of a personal fall arrest system is based on its being attached to an anchoring system which does not significantly reduce the strength of the system (such as a properly dimensioned eye-bolt/snap-hook anchorage). Therefore, if a means of attachment is used that will reduce the strength of the system, that component should be replaced by a stronger one, but one that will also maintain the appropriate maximum arrest force characteristics.
- c. Tie-off using a knot in a rope lanyard or lifeline (at any location) can reduce the lifeline or lanyard strength by 50 percent or more. Therefore, a stronger lanyard or lifeline should be used to compensate for the weakening effect of the knot, or the lanyard length should be reduced (or the tie-off location raised) to minimize free fall distance, or the lanyard or lifeline should be replaced by one which has an appropriately incorporated connector to eliminate the need for a knot.
- d. Tie-off of a rope lanyard or lifeline around an "H" or "I" beam or similar support can reduce its strength as much as 70 percent due to the cutting action of the beam edges. Therefore, a webbing lanyard or wire core lifeline should be used around the beam; or the lanyard or lifeline should be protected from the edge; or free fall distance should be greatly minimized.

Fall Protection System Considerations cont'd

- e. Tie-off where the line passes over or around rough or sharp surfaces reduces strength drastically. Such a tie-off should be avoided or an alternative tie-off rigging should be used. Such alternatives may include use of a snap-hook/dee-ring connection, wire rope tie-off, an effective padding of the surfaces, or an abrasion-resistance strap around or over the problem surface.
- Horizontal lifelines may, depending on their geometry and angle of sag, be f. subjected to greater loads than the impact load imposed by an attached component. When the angle of horizontal lifeline sag is less than 30 degrees, the impact force imparted to the lifeline by an attached lanyard is greatly amplified. For example, with a sag angle of 15 degrees, the force amplification is about 2:1 and at 5 degrees sag. it is about 6:1. Depending on the angle of sag, and the line's elasticity, the strength of the horizontal lifeline and the anchorages to which it is attached should be increased a number of times over that of the lanyard. Extreme care should be taken in considering a horizontal lifeline for multiple tie-offs. The reason for this is that in multiple tie-offs to a horizontal lifeline, if one employee falls, the movement of the falling employee and the horizontal lifeline during arrest of the fall may cause other employees to also fall. Horizontal lifeline and anchorage strength should be increased for each additional employee to be tied-off. For these and other reasons, the design of systems using horizontal lifelines must only be done by qualified persons. Testing of installed lifelines and anchors prior to use is recommended.
- g. The strength of an eye-bolt is rated along the axis of the bolt and its strength is greatly reduced if the force is applied at an angle to this axis (in the direction of shear). Also, care should be exercised in selecting the proper diameter of the eye to avoid accidental disengagement of snap-hooks not designed to be compatible for the connection.
- h. Due to the significant reduction in the strength of the lifeline/lanyard (in some cases, as much as a 70 percent reduction), the sliding hitch knot should not be used for lifeline/lanyard connections except in emergency situations where no other available system is practical. The "one-and-one" sliding hitch knot should never be used because it is unreliable in stopping a fall. The "two-and-two," or "three-and-three" knot (preferable), may be used in emergency situations; however, care should be taken to limit free fall distance to a minimum because of reduced lifeline/lanyard strength.

9. Vertical lifeline considerations.

As required by the standard, each employee must have a separate lifeline when the lifeline is vertical. The reason for this is that in multiple tie-offs to a single lifeline, if one employee falls, the movement of the lifeline during the arrest of the fall may pull other employees' lanyards, causing them to fall as well.

Fall Protection System Considerations cont'd

10. Snap-hook considerations:

- a. Required by this standard for all connections, locking snap-hooks incorporate a positive locking mechanism in addition to the spring loaded keeper, which will not allow the keeper to open under moderate pressure without someone first releasing the mechanism. Such a feature, properly designed, effectively prevents roll-out from occurring.
- b. The following connections must be avoided (unless properly designed locking snaphooks are used) because they are conditions which can result in roll-out when a nonlocking snap-hook is used:
 - Direct connection of a snap-hook to a horizontal lifeline.
 - Two (or more) snap-hooks connected to one dee-ring.
 - Two snap-hooks connected to each other.
 - A snap-hook connected back on its integral lanyard.
 - A snap-hook connected to a webbing loop or webbing lanyard.
 - Improper dimensions of the dee-ring, rebar, or other connection point in
 - relation to the snap-hook dimensions which would allow the snap-hook keeper to be depressed by a turning motion of the snap-hook.

11. Free fall considerations:

The employer and employee should at all times be aware that a system's maximum arresting force is evaluated under normal use conditions established by the manufacturer, and in no case using a free fall distance in excess of 6 feet (1.8 m). A few extra feet of free fall can significantly increase the arresting force on the employee, possibly to the point of causing injury. Because of this, the free fall distance should be kept at a minimum, and, as required by the standard, in no case greater than 6 feet (1.8 m). To help assure this, the tie-off attachment point to the lifeline or anchor should be located at or above the connection point of the fall arrest equipment to harness. (Since otherwise additional free fall distance is added to the length of the connecting means (i.e. lanyard).) Attaching to the working surface will often result in a free fall greater than 6 feet (1.8 m). For instance, if a 6-foot (1.8 m) lanyard is used, the total free fall distance will be the distance from the working level to the body harness attachment point plus the 6 feet (1.8 m) of lanyard length. Another important consideration is that the arresting force that the fall system must withstand also goes up with greater distances of free fall, possibly exceeding the strength of the system.

Fall Protection System Considerations cont'd

12. Elongation and deceleration distance considerations.

Other factors involved in a proper tie-off are elongation and deceleration distance. During the arresting of a fall, a lanyard will experience a length of stretching or elongation, whereas activation of a deceleration device will result in a certain stopping distance. These distances should be available with the lanyard or device's instructions and must be added to the free fall distance to arrive at the total fall distance before an employee is fully stopped. The additional stopping distance may be very significant if the lanyard or deceleration device is attached near or at the end of a long lifeline, which may itself add considerable distance due to its own elongation. As required by the standard, sufficient distance to allow for all of these factors must also be maintained between the employee and obstructions below, to prevent an injury due to impact before the system fully arrests the fall. In addition, a minimum of 12 feet (3.7 m) of lifeline should be allowed below the securing point of a rope grab type deceleration device, and the end terminated to prevent the device from sliding off the lifeline. Alternatively, the lifeline should extend to the ground or the next working level below. These measures are suggested to prevent the worker from inadvertently moving past the end of the lifeline and having the rope grab become disengaged from the lifeline.

13. Obstruction considerations:

The location of the tie-off should also consider the hazard of obstructions in the potential fall path of the employee. Tie-offs that minimize the possibilities of exaggerated swinging should be considered.

14. Other considerations:

Because of the design of some personal fall arrest systems, additional considerations may be required for proper tie-off. For example, heavy deceleration devices of the selfretracting type should be secured overhead in order to avoid the weight of the device having to be supported by the employee. Also, if self-retracting equipment is connected to a horizontal lifeline, the sag in the lifeline should be minimized to prevent the device from sliding down the lifeline to a position that creates a swing hazard during fall arrest. In all cases, manufacturer's instructions should be followed.